The Convallis learning rule for unsupervised learning in spiking neuronal networks

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Convallis Rule for Unsupervised Learning in Cortical Networks

The phenomenology and cellular mechanisms of cortical synaptic plasticity are becoming known in increasing detail, but the computational principles by which cortical plasticity enables the development of sensory representations are unclear. Here we describe a framework for cortical synaptic plasticity termed the "Convallis rule", mathematically derived from a principle of unsupervised learning ...

متن کامل

Modeling Hebb Learning Rule for Unsupervised Learning

This paper presents to model the Hebb learning rule and proposes a neuron learning machine (NLM). Hebb learning rule describes the plasticity of the connection between presynaptic and postsynaptic neurons and it is unsupervised itself. It formulates the updating gradient of the connecting weight in artificial neural networks. In this paper, we construct an objective function via modeling the He...

متن کامل

Unsupervised Learning in Networks of Spiking Neurons Using Temporal Coding

We propose a mechanism for unsupervised learning in networks of spiking neurons which is based on the timing of single ring events. Our results show that a topology preserving behaviour quite similar to that of Kohonen's self-organizing map can be achieved using temporal coding. In contrast to previous approaches, which use rate coding, the winner among competing neurons can be determined fast ...

متن کامل

Analog Memristive Synapse in Spiking Networks Implementing Unsupervised Learning

Emerging brain-inspired architectures call for devices that can emulate the functionality of biological synapses in order to implement new efficient computational schemes able to solve ill-posed problems. Various devices and solutions are still under investigation and, in this respect, a challenge is opened to the researchers in the field. Indeed, the optimal candidate is a device able to repro...

متن کامل

Self-repairing Learning Rule for Spiking Astrocyte-Neuron Networks

In this paper a novel self-repairing learning rule is proposed which is a combination of the spike-timing-dependent plasticity (STDP) and Bienenstock, Cooper, and Munro (BCM) learning rules: in the derivation of this rule account is taken of the coupling of GABA interneurons to the tripartite synapse. The rule modulates the plasticity level by shifting the plasticity window, associated with STD...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: BMC Neuroscience

سال: 2013

ISSN: 1471-2202

DOI: 10.1186/1471-2202-14-s1-p426